SpaceX launch of Falcon Heavy Rocket

The launch of the Falcon Heavy Rocket by SpaceX this week inspired a new generation with the wonders of space travel and the advances in aerospace technology that have been made since the 1970s era technology that defined the U.S. space shuttle program.  With the end of the shuttle program, which saw its last launch (more…)

Fancy a Sandwich?

  In this post I want to use the sandwich panel as an example to explain some basic concepts about bending of structures. The explanations in this post are kept very basic and are similar to a first semester course in structural mechanics. Sandwich panels are an important composite structure in aerospace applications as well as (more…)

A Vision for Shape-Adaptive Aircraft

Over the last couple of months, a number of readers of the blog and listeners of the podcast have asked me about my research. Although there is a brief overview on the Contact page, the information there probably leaves too many things unsaid to form a clear picture of what the research group I am part of is trying to achieve. (more…)

Wing Twist

The technological jump from no functional aeroplane to the first serious military fighter occurred in a mere 10 years. The Wright brothers conducted their first flight in late 1903 and by 1914 WWI broke out with an associated expansion in military flying. This expansion occurred almost entirely without the benefits of organised science in formal (more…)

The DeHavilland Comet Crash

The DeHavilland Comet was the first production commercial jet airliner that went into service in 1952. The earliest production aircraft designated G-ALYP was loaned to the British Overseas Airways Company and inaugurated the first scheduled overseas flight from London to Johannesburg with fare-paying customers on-board. Much of the design is similar to the commercial airliners seen (more…)

Milestones in Aircraft Structural Design

Although the exploitation of advanced composite materials in the aerospace industry is steadily increasing, high strength metallic materials, particularly aluminium alloys, are still the first choice for large-scale fleets such as the Airbus A320 and the Boeing 737. Since the introduction of stressed-skin “semi-monocoque” aircraft structures in the 1930’s the structural design philosophy has developed (more…)

Loads Acting on Aircraft

The flight envelope of an aeroplane can be divided into two regimes. The first is rectilinear flight in a straight line, i.e. the aircraft does not accelerate normal to the direction of flight. The second is curvilinear flight, which, as the name suggests, involves flight in a curved path with acceleration normal to tangential flight (more…)

A Brief History of Aircraft Structures

Aircraft have changed enormously over the last century from the early Wright Flyer flown at Kittyhawk to the supersonic SR-71 Blackbird flown today. Of course the developments in aeronautical engineering can be broken down into separate divisions that have developed at different rates: a) the aerodynamics, b) power plant engineering, c) control, radios and navigation (more…)

From Glider to WII Fighter: Lessons Learned from Glider Design

After Germany and its allies lost WWI, motor flying became strictly prohibited under the Treaty of Versailles. Creativity often springs from constraints, and so, paradoxically, the ban imposed by the Allies encouraged precisely what they had actually wanted to thwart: the growth of the German aviation industry. As all military flying was prohibited under the Treaty, (more…)

The Evolution of Airplanes

Adrian Bejan is a Professor of Mechanical Engineering and Materials Science at Duke University and as an offshoot from his thermodynamics research he has pondered the question why evolution exists in natural i.e. biological and geophysical, and man-made i.e. technological realms. To account for the progress of design in evolution Prof. Bejan conceived the constructal (more…)